

Course Specifications

Course Title:	General Genetics
Course Code:	BIO221
Program:	Bachelor of Science in Biology
Department:	Department of Biology
College:	Faculty of Science
Institution:	University of Tabuk

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategie Methods	es and Assessment 4
2. Assessment Tasks for Students	4
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	5
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 3 (2 Theoretical + 1 Practical) hours		
2. Course type		
a. University College Department $$ Others		
b. Required $$ Elective		
3. Level/year at which this course is offered: Level 4/ Second semester/ Second year		
4. Pre-requisites for this course (if any): General Biology 2 (BIO202).		
5. Co-requisites for this course (if any): None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	2	50%
2	Blended		
3	E-learning		
4	Distance learning		
5	Laboratory	2	50%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	26
2	Laboratory/Studio	26
3	Tutorial	
4	Others (specify)	
	Total	52

B. Course Objectives and Learning Outcomes

1. Course Description

- The course includes introduction, historical background and basic concepts of genetics, genetic crosses, Mendelian laws; dominance, segregation and independent assortment, gene interaction, incomplete dominance, co-dominance, lethal genes, crossing over, gene mapping and sex determination. It also covers topics on multiple alleles and allele types, cell cycle and mitotic division, meiotic division & significance of meiosis, structure of DNA and RNA, DNA packaging in the chromosome, DNA replication, DNA synthesis in prokaryotes & eukaryotes, transcription, and translation of messenger RNA (mRNA), and protein synthesis.

2. Course Main Objective

By the end of this course, the students should be able to:

- Help students to become familiar with the terminology of genetics.
- Provide students with a strong background in the principles of Mendelian and non-mendelian laws of Inheritance.
- Develop students' ability to solve monohybrid-cross, dihybrid-cross, and multi-hybrid cross using branch diagrams and/ or Punnett squares.

- Introduce students to some syndromes related to genetics.
- Students will become familiar with structure of DNA and RNA, Nucleotide, Sugar and Phosphate.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	To describe Mendelian and non-mendelian laws of Inheritance.	K1
1.2	To recognize structure of DNA, RNA and proteins.	K2
2	Skills:	
2.1	To calculate the probability of genetic crosses outcomes.	S5
2.2	To explain genetic abnormalities caused by changes in chromosome number.	S1
2.3	To develop genetic engineering and recombinant DNA technology.	S4
3	Values:	
3.1	To work independently as a member or as a team.	V1

C. Course Content

N 0	(List of Topics (Theory Part	Contact Hours
1	Introduction to genetics.	2
2	Mendel's first law (law of segregation) and the principle of dominance.	2
3	Mendel's second law (law of independent assortment).	2
4	Mendel's second law (law of independent assortment).	2
5	Genetics of Sex: Sex determination, sex- linked characters, Sex influenced, sex limited characters.	2
6	Genetics of Sex: Sex determination, sex- linked characters, Sex influenced, sex limited characters.	2
7	Linked Genes and Chromosome mapping, crossing over syndromes related to genetics	2
	Mid Term Exam	
8	Linked Genes and Chromosome mapping, crossing over syndromes related to genetics.	2
9	Cell cycle and mitotic division significance of meiosis.	2
10	Nucleic acids: structure and function, DNA packaging in the chromosome.	
11	Transcription & Translation of messenger RNA (mRNA) and Protein2synthesis2	
12	Nucleic acid replication and synthesis in eukaryotes	
13	Nucleic acid replication and synthesis in prokaryotes	
	Final Exam	
	Total	26

C. Course Content

N o	(List of Topics (Practical Part	Contact Hours	
1	Introduction to genetics Mendel's first law.	2	
2	Identification of pure and hybrid genotype (Testcross)	2	
3	Mendel's second law (law of independent assortment).	4	
4	Non-Mendelian inheritance incomplete dominance, CO-dominance.	4	
5	Linked Genes and Chromosome mapping, crossing over.	4	
6	Mid Term Practical Exam		
7	Genetics of Sex: Sex- linked characters.	2	
8	Lethal genes	4	
9	The blood group system inheritance and genetics.	2	
10	Cell cycle (mitotic division)	2	
	Final Exam		
	Total 26		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	To describe Mendelian and non-mendelian laws of Inheritance.	- Lectures.	- Homework
1.2	To recognize structure of DNA, RNA and proteins.	 Lectures Activities and homework. 	 Quizzes. Homework Periodic exam. Final exam.
2.0	Skills		
2.1	To calculate the probability of genetic crosses outcomes.	 Lectures Activities and homework. 	 Quizzes. Homework Periodic exam. Final exam.
2.2	To explain genetic abnormalities caused by changes in chromosome number.	 Lectures Activities and homework. 	 Quizzes. Homework Periodic exam. Final exam.
2.3	To develop genetic engineering and recombinant DNA technology.	 Lectures Activities and homework. 	 Quizzes. Homework Periodic exam. Final exam.
3.0	Values		

3.1	To work independently as a member or as a team.	- Individual presentation or group.	- Interactive discussion and participation.
-----	--	---	---

2. Assessment Tasks for Students

#	*Assessment task	Week Due	Percentage of Total Assessment Score
1	Quizzes + Assignments + Class discussion	1-13	10%
2	Midterm Theoretical Exam	8	25%
3	Practical Midterm Exam	8	10%
4	Final Practical Exam	14	15%
5	Final Theoretical Exam	15	40%
6			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Office hours 6 hrs./ week at least.
- Academic Guidance: about 30 students allotted to each faculty member.
- Direct supervision of staff for lab works.
- Electronic communication through black board and e-mail.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	1. Gardinar.(1985).Introduction to Genetics. 2 Lewin, B. (1983). Genes. John Wiley and Sons Inc. New York
Essential References Materials	Genetica, Chromosoma Journal of molecular and applied Genetics
Electronic Materials	Computers with net connection, Scientific websites.
Other Learning Materials	Programs and CDs if available

2. Facilities Required

Item	Resources
Accommodation Classrooms, laboratories, demonstration) (.rooms/labs, etc	 A sufficient number of classrooms, well equipped Practical laboratories are available to accommodate students Virtual session provided by the blackboard (which allow discussions and sharing PowerPoint and video)
Technology Resources	-Data show.

AV, data show, Smart Board, software,) (.etc	-Wireless connection in the building for students and faculties.
Other Resources	Microscopes with drawing tube. Lens micrometer
Specify, e.g. if specific laboratory)	permanent slides for cell division stains: safranin, light
equipment is required, list requirements or	green, giemsa, Aceto-carmine and basic fuchsin teaching
(attach a list	models.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
- Effectiveness of teaching and assessment.	- Students.	Indirect - Questionnaires.
- The extent of achieving the course learning outcomes.	Program committee.Staff members.Students.	Direct - Questionnaires. - Reports. - Meetings
- Quality of learning resources.	Program leaders.Peer Reviewer.	Direct & Indirect - Questionnaires. - Reports. - Meetings

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Biology Department Council
Reference No.	
Date	1/6/2022