

Course Specifications

Course Title:	Complex Analysis I
Course Code:	MATH 413
Program:	Bachelor of Science in Mathematics
Department:	Mathematics
College:	Science
Institution:	University of Tabuk

Table of Contents

A. Course Identification.....	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes.....	3
1. Course Description	3
2. Course Main Objective.....	3
3. Course Learning Outcomes	4
C. Course Content.....	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods.....	4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities.....	5
1.Learning Resources	5
2. Facilities Required.....	6
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours:	03 Hours/Week			
2. Course type				
a.	University	<input type="checkbox"/>	College	<input type="checkbox"/>
b.	Required	<input checked="" type="checkbox"/>	Elective	<input type="checkbox"/>
Others <input type="checkbox"/>				
3. Level/year at which this course is offered: L6/Y3				
4. Pre-requisites for this course (if any): Math 311				
5. Co-requisites for this course (if any): None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description

The main purpose of this course is to introduce students to Complex Numbers & Variables, Complex Root, Complex Functions & Mapping by it, Exponential, Complex differentiation and Complex Integration: Complex Series and Singularities & Residue Theories (Cauchy's residue theorem).

2. Course Main Objective

- Students will be able to recall the basic concept of complex analysis.
- Students will be able to perform calculus on complex functions.
- Students will be able to apply analytic functions using Cauchy Riemann equations.
- Students will be able to compute Radius of convergence of a complex functions.

3. Course Learning Outcomes

CLOs		Aligned-PLOs
1	Knowledge and Understanding	
1.1	Students will be able to recall complex numbers and basics of complex variable functions.	K1
1.2	Students will be able to outline procedures and processes of Analyticity, Harmonicity, complex integrals, Cauchy's theory and its consequences and residue method.	K2
2	Skills :	
2.1	Students will be able to analyze the continuity in the complex plane and differentiability of such functions and particularly the use of the Cauchy-Riemann equations	S1
2.2	Students will be able to prove theorems of complex analysis.	S2
2.3	Students will be able to and apply the Cauchy-Goursat theorem and its consequences.	S3
2.4	Students will be able to communicate mathematical concepts clearly.	S4
3	Values:	
3.1	Students will be able to work effectively in groups.	V1
3.2	Students will be able to develop enhanced self-learning.	V2

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to complex numbers and graphical representation.	3 Hrs
2,3	Demoivre's theorem, , Complex Roots, Solution of equations Theory of Complex Functions.	6 Hrs
4	Complex Limits Theories, Continuity, Differentiability & Theorems.	3 Hrs
5	Cauchy-Riemann conditions, Harmonics Functions.	3 Hrs
6	Mid-Exam#1	
6,7	Conjugate and its applications, Complex Integration: Theories, Integration Contours	6 Hrs
8,9	Cauchy integral theorem, Cauchy integral formula (proof) and its derivative and regarding examples	6 Hrs
10,11	Power series, convergence and radius of convergence, Taylor's and Laurent's series.	6 Hrs
11	Mid-Exam#2	
12,13	Different types of Singularities, zeros and poles, Residue and Residue theorem and examples.	6 Hrs
14,15	Revision and final Exam	6 Hrs
Total		45 Hrs

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Students will be able to recall complex numbers and basics of complex		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	variable functions.	Introducing new ideas through case study Lectures Class Discussions	Quizzes I II Midterm Exams Final Exams Homework assignments
1.2	Students will be able to outline procedures and processes of Analyticity, Harmonicity, complex integrals, Cauchy's theory and its consequences and residue method.		
2.0	Skills		
2.1	Students will be able to analyze the continuity in the complex plane and differentiability of such functions and particularly the use of the Cauchy-Riemann equations		Quizzes I II Midterm Exams Final Exams Homework assignments.
2.2	Students will be able to prove theorems of complex analysis.	Lectures Class Discussions	
2.3	Students will be able to and apply the Cauchy-Goursat theorem and its consequences.		
2.4	Students will be able to communicate mathematical concepts clearly.		
3.0	Values		
3.1	Students will be able to work effectively in groups.	Lectures Class Discussions	Quizzes Homework assignments
3.2	Students will be able to develop enhanced self-learning.	Group discussion	Group work

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Activities	Weekly basis	5%
2	Homework	Weekly basis	5%
3	Quizzes	Weekly basis	10%
4	Mid Exam1	6 th week	20%
5	Mid Exam2	11 th week	20%
6	Final Exam	At end of the Semester	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Six office hours per week in the lecturer schedule.

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	D. G. Zill & P. D. Shanahan," A First Course in Complex Analysis with Applications", Jones & Bartlett Publishers, New York, 2003.
Essential References Materials	Brown; Churchill, "Complex Variables and Applications," 6 th Ed., McGraw-Hill, 1996.

Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1. Lecture room with maximum capacity of 30 students and equipped with White Board, Overhead projector and internet connection. 2. Library
Technology Resources (AV, data show, Smart Board, software, etc.)	Projectors
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students	Direct and Indirect
Extent of achievement of course learning outcomes	Teachers	Direct
Quality of learning resources	Students	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify))

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	The Curriculum committee
Reference No.	
Date	25/08/2021