
Course Title: Object Oriented Programming

Course Code: CSC 1201

Program: Bachelor in Computer Science

Department: Computer Science

College: Faculty of Computers and Information Technology

Institution: University of Tabuk

Version: 1.0

Last Revision Date: 27 July 2022

Table of Contents
A. General information about the course:..3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment
Methods..4

C. Course Content..4

D. Students Assessment Activities..5
E. Learning Resources and Facilities..5

F. Assessment of Course Quality...5
G. Specification Approval..6

2

A. General information about the course:

1. Course Identification

1. Credit hours: (4)

2. Course type
A. ☐ University ☒ College ☐ Department ☐ Track ☐ Others
B. ☒ Required ☐ Elective
3. Level/year at which this course is offered: (Level 3/Year 2)
4. Course general Description:
This course introduces advanced programming skills and focuses on the core concepts of object-oriented
programming. This course focuses on the understanding and practical mastery of object-oriented concepts such
as classes, objects, data abstraction, inheritance and polymorphism.

5. Pre-requirements for this course (if any):

CSC 1103

6. Co-requisites for this course (if any):

N/A

7. Course Main Objective(s):
After completing this course, the students will be able to:
 - Create and use classes and objects.
 - Declare and create an array of objects.
 - Understand inheritance and software reusability.
 - Design and implement systems that are easily extensible and maintainable with polymorphism.
 - Understand structures, inner classes and exceptions handling.
 - Understand how to create, read, write, and update files.

2. Teaching mode (mark all that apply)

No Mode of Instruction Contact Hours Percentage
1 Traditional classroom 75 100 %

2 E-learning - -

3
Hybrid

 Traditional classroom
 E-learning

- -

4 Distance learning - -

3

3. Contact Hours (based on the academic semester)

No Activity Contact Hours
1. Lectures 45
2. Laboratory/Studio 30
3. Field -
4. Tutorial -
5. Others (specify) -

Total 75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment
Methods

Code Course Learning
Outcomes

Code of PLOs aligned
with program

Teaching
Strategies

Assessment
Methods

1.0 Knowledge and understanding

1.1

Identify the elements
and principles of object-
oriented programming
with examples.

K1, K2, K3

Lectures, class
discussions, lab

discussions

Exams, lab
assignments1.2

Describe the concepts of
object-oriented to
software design

K1, K2, K3

1.3

Describe the importance
of programming, testing,
and implementation
principles.

K2,K3,K4

2.0 Skills

2.1
Design and develop
object-oriented
computer programs

S2, S3, S4 Lectures, class
discussions, lab

discussions
Exams, lab

assignments

2.2
Design problems as steps
so as to be solved
systematically

S2

3.0 Values, autonomy, and responsibility

3.1

Communicate and work
(effectively, ethically,
and professionally)
(individually and in
groups/teamwork) to
accomplish all the
assigned duties and
projects.

V2
Lab discussions

Lab discussions

Lab assignments

Lab works

4

C. Course Content

No List of Topics Contact
Hours

1.

Classes and Objects – Part 1
- Describe objects and classes, and use classes to model objects.
- Use UML graphical notation to describe classes and objects.
- Demonstrate how to define classes and create objects.
Lab Experiment: Implements the concepts of class and object creation.

5

2.

Classes and Objects – Part 2
- Create objects using constructors.
- Access objects via object reference variables.
- Access an object’s data and methods using the object member access

operator (.).
- Distinguish between object reference variables and primitive data type

variables.
- Distinguish between instance and static variables and methods.
Lab Experiment: Implements the concepts of constructors, instance members,
and static members.

5

3.

Classes and Objects – Part 3
- Define private data fields with appropriate get and set methods.
- Store and process objects in arrays.
- Determine the scope of variables in the context of a class.
- Use the keyword this to refer to the calling object itself.
Lab Experiment: Implements the concepts of encapsulation and array of objects.

5

4.

Thinking in Objects – Part 1
- Discover the relationships between classes.

o Association
o Aggregation
o Composition

- Design programs using the object-oriented paradigm.
Lab Experiment: Implements classes, objects, members of a class, and
relationships among them.

5

5.

Thinking in Objects – Part 2
- Use the BigInteger and BigDecimal classes for computing very large numbers

with arbitrary precisions
- Use the String class to process immutable strings.
- Use the StringBuilder and StringBuffer classes to process mutable strings.
Lab Experiment: Implement programs using BigInteger, BigDecimal, String,
StringBuilder, and StringBuffer classes.

5

6.

Inheritance – Part 1
- Define a subclass from a superclass through inheritance.
- Invoke the superclass’s constructors and methods using the super keyword.
- Override instance methods in the subclass.
Lab Experiment: Implements the concepts of Inheritance.

5

7. Inheritance – Part 2 5

5

- Distinguish differences between overriding and overloading.
- Explore the toString() method in the Object class.
Lab Experiment: Implement inheritance and show method overriding, and
demonstrate method overloading.

8.

Polymorphism – Part 1
- Discover polymorphism and dynamic binding.
- Describe casting and explain why explicit downcasting is necessary.
- Explore the equals method in the Object class.
Lab Experiment: Implement the concept of polymorphism and dynamic binding.

5

9.

Polymorphism – Part 2
- Store, retrieve, and manipulate objects in an Array.
- Enable data and methods in a superclass accessible from subclasses using the

protected visibility modifier.
- Prevent class extending and method overriding using the final modifier.
Lab Experiment: Implements the concepts of polymorphism and array of objects.

5

10.

Inner Classes
- Define and use inner classes.
- Private inner class and static inner class.
- Access outer class from inner class.
Lab Experiment: Implements the concept of inner classes.

5

11.

Abstraction
- Design and use abstract classes.
- Define abstract classes and define classes that extend abstract classes
- Explore the similarities and differences among concrete classes, and abstract

classes.
Lab Experiment: Implements the concepts of abstract classes and abstract
methods.

5

12.

Interface
- Define and use interfaces and define classes that implement interfaces.
- Explore the similarities and differences among concrete classes, abstract

classes, and interfaces.
Lab Experiment: Implements the concepts of interfaces.

5

13.

Exception Handling – Part 1
- Get an overview of exceptions and exception handling.
- Explore the advantages of using exception handling.
- Distinguish exception types: Error vs. Exception and checked vs. unchecked.
- Declare exceptions in a method header.
Lab Experiment: Implements the concepts of exceptions.

5

14.

Exception Handling – Part 2
- Throw exceptions in a method.
- Write a try-catch block to handle exceptions.
- Use the finally clause in a try-catch block.
- Define custom exception classes.
Lab Experiment: Implements the concepts of exception handling.

5

15. File Handling
- Discover file/directory properties.

5

6

- Delete and rename files/directories.
- Create files/directories.
- Write data to a file.
- Read data from a file.
- Develop a program that replaces text in a file.
Lab Experiment: Implements the concepts of file handling.

Total 75

D. Students Assessment Activities

No Assessment Activities *
Assessment

timing
(in week no)

Percentage of Total
Assessment Score

1. Lab Assignments 2 – 14 20%
2. Mid-Term Exam 1 7 15%
3. Mid-Term Exam 2 12 15%
4. Lab Exam 15 10%
5. Final Exam 16 40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References Intro to Java Programming, Comprehensive Version, Y. Daniel Liang, Pearson,
12rd edition, 2019, ISBN 978-0136520153

Supportive References

Visual C# How to Program, Paul Deitel and Harvey Deitel, Pearson, 6th
edition, 2016, ISBN 978-0134601540

C++ How to Program, Harvey M. Deitel and Paul J. Deitel, Pearson, 10th
edition, 2016, , ASIN:  0134448235

Programming Languages Academy, Python for Beginners: 2 Books in 1: Python
Programming for Beginners, Independently published, 2020, ISBN-10 :
 1654414018, ISBN-13 :  978-1654414016

Electronic Materials https://www.w3schools.com/java/default.asp

Other Learning Materials

Java How to Program, Late Objects, Paul Deitel and Harvey Deitel, Pearson,
11rd edition, 2017, ISBN 978-0134791401

Java 9 for Programmers, Paul Deitel and Harvey Deitel, Pearson, 4rd edition,
2017, ASIN: B071S84XCK

2. Required Facilities and equipment
Items Resources

facilities Classroom

7

Items Resources
(Classrooms, laboratories, exhibition rooms,

simulation rooms, etc.)
Technology equipment

(projector, smart board, software)

Data show

Other equipment
(depending on the nature of the specialty)

Students should have laptops

F. Assessment of Course Quality
Assessment Areas/Issues Assessor Assessment Methods

Effectiveness of Teaching
Faculty, Program Leaders, and

Advisory Board Both Direct and Indirect

Students Indirect
Effectiveness of Students

Assessment
Faculty, Program Leaders, Advisory
Board, and Independent Opinion Both Direct and Indirect

Quality of Learning Resources Faculty, Students, and Advisory
Board Indirect

The Extent to which CLOs
have been Achieved

Faculty, Program Leaders, Advisory
Board, and Independent Opinion

Direct (as in section B)
and Indirect/Surveys

Students Indirect
Other - -

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval
COUNCIL /COMMITTEE

REFERENCE NO.

DATE

8

	A. General information about the course:
	B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods
	C. Course Content
	D. Students Assessment Activities
	E. Learning Resources and Facilities
	F. Assessment of Course Quality
	G. Specification Approval

