الصفحة الرئيسية

كلية العلوم \ الفيزياء

ناصر بادي

نسبة اكتمال الملف الشخصي
الجنسية الامريكية
التخصص العام الفيزياء
التخصص الدقيق فيزياء الحالة الصلبة وخواص المواد
المسمى الوظيفي استاذ
الدرجة العلمية (المرتبة) دكتوراه

نبذه مختصرة

أستاذ الفيزياء متخصص في الطاقات المتجددة أكثر من 25 عامًا من الخبرة التراكمية في الأنشطة/النتائج البحثية في الولايات المتحدة الأمريكية، و20 عامًا كمسؤول أول في إدارة الأبحاث في مركز المواد المتقدمة بجامعة هيوستن (تكساس)، وخبرة إدارية في العمل لمدة 6 سنوات متتالية مع عمادة البحث العلمي في جامعة تبوك، وخدمات للمجتمع إدارة وقيادة العديد من المشاريع الكبيرة بنجاح بتمويل من وزارة الطاقة (DOE)، وزارة الدفاع (DOD)، وزارة النقل (DOT)، مؤسسة العلوم الوطنية (NSF)، المعهد الوطني للصحة (NIH)، الإدارة الوطنية للملاحة الجوية والفضاء (NASA)…) خبرة ومعرفة بالشركات التجارية الناشئة ونقل التكنولوجية وتسويق براءات الاختراع تفاعل مع طلاب المرحلة الجامعية والدراسات العليا وما بعد الدكتوراه نشر العديد من الأبحاث العلمية في مجلات مرموقة وسجل متميز يتجاوز 150 بحثًا بما في ذلك براءات الاختراع والأبحاث والمقالات والمؤتمرات عضو في هيئة تحرير العديد من المجلات المتخصصة في علوم النانو والهندسة

المؤهلات العلمية

1- دكتوراه في الفيزياء 1996 2- ماجستير في الفيزياء - إلكترونيات دقيقة 1991 3- بكالوريوس في الفيزياء - إلكترونيات 1989

الاهتمامات البحثية

1- الإدارة الحرارية وحلول الاستدامة 2- تخزين الطاقة الكهربائية 3- الطاقة المتجددة 4- إنتاج وتخزين الهيدروجين 5- خلايا وقود الهيدروجين

الخبرات والمناصب الإدارية

1- أستاذ فيزياء الطاقة المتجددة 2- إدارة الأبحاث العليا في مركز المواد المتقدمة بجامعة هيوستن (أمريكا) 3- نقل التكنولوجية وتسويق براءات الاختراع 4- مستشار عمادة البحث العلمي 5- مشرف معمل أبحاث النانو 6- مشرف معمل الطاقة المتجددة 7- مشرف على إدارة التدريب والفعاليات والمسؤولية الاجتماعية بمركز الطاقة المتجددة 8- عضو اللجنة الدائمة لفريق تنفيذ مبادرات التمويل المؤسسي للبحث العلمي 9- رئيس اللجنة الفرعية للاعتماد البرامجي )المعيار الرابع (هيئة التدريس)

الجدول الدراسي
اليوم المادة الوقت
من إلى
الأحد ساعات مكتبية 10:00 12:00
الإثنين دوائر الكترونية 1 08:00 09:30
الإثنين ساعات مكتبية 10:00 12:00
الثلاثاء أساسيات الفيزياء 08:00 10:00
الثلاثاء ساعات مكتبية 10:00 12:00
الأربعاء دوائر الكترونية 1 08:00 09:30
الأربعاء ارشاد أكاديمي (بلاك بورد) 11:00 12:00
الخميس معمل الفيزياء العامة 08:00 10:00
الخميس معمل الكترونات 10:00 12:00
الأبحاث والمؤلفات
  • Nacer Badi, Aashis S Roy, Hatem A Al-Aoh, Mohamed S Motawea, Saleh A Alghamdi, Abdulrhman M Alsharari, Abdulrahman S Albaqami, Alex Ignatiev, Enhanced and Proficient Soft Template Array of Polyaniline—TiO2 Nanocomposites Fibers Prepared Using Anionic Surfactant for Fuel Cell Hydrogen Storage, Polymers 15, 4186 (2023)
  • Nacer Badi, Saleh A Alghamdi, Hazem M El-Hageen, Hani Albalawi, Onsite enhancement of REEEC solar photovoltaic performance through PCM cooling technique, PLOS ONE 18, e0281391 (2023)
  • Hatem A Al-Aoh, Nacer Badi, Aashis S Roy, Abdulrhman M Alsharari, Salah Abd El Wanees, Abdulrahman Albaqami, Alex Ignatiev, Preparation of Anionic Surfactant-Based One-Dimensional Nanostructured Polyaniline Fibers for Hydrogen Storage Applications, Polymers 15, 1658 (2023)
  • Nacer Badi, Aashis S Roy, Hatem A Al-Aoh, Saleh A Alghamdi, Ayshah S Alatawi, Ahmed A Alatawi, Alex Ignatiev, Synthesis of hybrid polyaniline–graphene oxide–sulfur nanocomposite fibers through ice nucleation as a cathode materials for lithium-sulfur battery, Materials Science for Energy Technologies 6, 351 (2023)
  • Nacer Badi, Azemtsop Manfo Theodore, Saleh A Alghamdi, Ayshah S Alatawi, Adnan Almasoudi, Abderrahim Lakhouit, Aashis S Roy, Alex Ignatiev, Thermal effect on curved photovoltaic panels: Model validation and application in the Tabuk region, PLOS ONE 17, 11 (2022)
  • Nacer Badi, Azemtsop Manfo Theodore, Saleh A Alghamdi, Hatem A Al-Aoh, Abderrahim Lakhouit, Pramod K Singh, Mohd Nor Faiz Norrrahim, Gaurav Nath, The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries, Polymers 14, 3102 (2022)
  • Nacer Badi, Azemtsop Manfo Theodore, Saleh A Alghamdi, Hatem A Al-Aoh, Abderrahim Lakhouit, Aashis S Roy, Ayshah S Alatawi, Alex Ignatiev, Fabrication and Characterization of Flexible Solid Polymers Electrolytes for Supercapacitor Application, Polymers 14, 3837 (2022)
  • Badi, AM Theodore, A Roy, SA Alghamdi, AOM Alzahrani, A Ignatiev, Preparation and Characterization of 3D Porous Silicon Anode Material for Lithium-Ion Battery Application Int J Electrochem Sci 17, 22064 (2022)
  • Nacer Badi, Syed Khasim, Ayshah S Alatawi, Apsar Pasha, Saleh Ahmad Al-Ghamdi, Alex Ignatiev, Fabrication and Testing of PEDOT: PSS Wrapped WO2/Au Ternary Nanocomposite Electrodes for High Performance Flexible Supercapacitor Applications, Journal of The Electrochemical Society 168 040526 (2021)
جوائز التميز
  • 5 جوائز براءات اختراع
المشاريع البحثية
اسم المشروع وصف المشروع
Multifunctional Solar Energy Harvesting, Energy Storage, and Thermal Management System The multidisciplinary research group is proposing a stand-alone solar harvester/energy storage system which uses flexible photovoltaic (PV) modules to convert sun light into electricity The electricity generated is then stored in a conductive polymer nanocomposites based battery modules A bi-reflector component will also be designed and integrated so that to enhance light absorption of the PV module and therefore maximizes power generation of the system The thermal management component will be carried out by using appropriate design allowing natural air convection for cooling the system We will explore the characteristics of the PV surfaces in term of solar energy gain and electrical efficiency A geometric characterization will be needed to determine how much energy will reach the solar receivers with and without bi-reflector We will also explore the possibility to validate the effectiveness of low-cost aluminum foil as a reflector The flexible battery will be fabricated, tested, and integrated with the PV module in order to demonstrate the feasibility of the proposed technology We expect the proposed the power generation system to be fully capable of capturing, converting, storing and delivering energy in a form that can be used to provide the power needed by the system for remote areas applications
Design and fabrication of large area lithium-ion batteries as energy storage solutions for sustainable building components The multidisciplinary research team proposes to design, fabricate, and test large area, low cost, flexible, and innovative lithium-ion battery (LIB) comprising of conducting polymer PEDOT-PSS composites entrained with specific and functionalized nanosized fillers such as carbon nanostructures for flexible energy storage devices These polymeric nanocomposites not only will deliver high rate performances but will also reduce the battery fabrication cost in comparison to traditional metal/semiconductor based batteries available in the market We also plan to extend our focus to the use of solvent-free structural polymer -based electrolytes that can offer both the desirable ion conductivity and mechanical strength The fabrication of battery components such as electrodes, gel polymer electrolyte, and effective separator can be made via a composite platform for scalable manufacturing processes A structural battery for energy storage will support the University of Tabuks efforts in renewable energy projects in general and "green" buildings in particular, and finding practical applications for novel technology integration Through a combination of low cost polymer based chemistry, nanotechnology and clever mechanical and architectural designs, our project aims at developing solutions that seamlessly integrate battery module distributed throughout a building to achieve optimum energy storage in any building environment and that can be integrated with solar modules or wind turbines as renewable energy harvesters Both of these energies, although prevalent in Saudi Arabia, suffer from the intermittent nature of the energy generation – wind changes and clouds These intermittent challenges can be mitigated by the proposed novel energy storage technology The ultimate goal of this project is to fabricate commercial prototype battery for use as on-site energy storage in sustainable buildings We also plan to capitalize on the projected research findings to produce LIB pouches for portable and consumer electronics
Development of innovative electrical and thermal energy storage solutions for sustainable buildings integrated hybrid photovoltaics system Breakthroughs in advanced multifunctional materials for energy storage, conservation, and harvesting are critically needed to improve building energy efficiency for both new constructions and retrofitting of older buildings A structural capacitor for energy storage will support the University of Tabuk (UT) initiatives for “green building and finding practical applications for novel technology integration The nanostructured materials technology we are developing at UT in collaboration with the University of Houston (USA) for energy storage solution can be scaled up for load-bearing capacitor banks that offer energy storage capabilities with structural properties, and this can be integrated as part of buildings design along with photovoltaic (PV) energy technology that UT/UH is envisioning Solar panels directly convert solar radiation into electricity with a maximum efficiency of around 15 to 20% This means that more than 80% of the solar radiation falling on photovoltaic cells is not converted into electricity The rest is lost as heat, which increases the PV panel temperature and will have a negative effect on both the performance and lifespan of the solar panel First, research activities will include in-house development of high efficiency and long life-span solar cells to lower the cost of production of the photovoltaic solar panels Second, and in order to maximize the benefit of the PV panels, we plan to use hybrid photovoltaic thermal technology which consists of simultaneously generating thermal and electrical energy Hybrid solar systems can generate more energy per unit area compared to the separate solar panel and thermal collector system UT team has the capability to engineer and synthesize the raw materials for testbed prototyping to meet the energy storage requirements UT also has the capability to characterize and scale up the technology UH team plans to work on the structural capacitors packaging strategy and integration to meet the “Green building design The objective of the proposal is to develop, characterize and integrate materials and systems that can actively manage building energy demand by creating new electrical and thermal energy storage capacities To address the challenge, this visionary program will focus on three distinct areas of research and development The first deals with the synthesis and characterization of prototype nanocomposites made of artificial nanodielectrics “core-shell nanoparticles that will be entrained in a polymer matrix It is a forceful and influential concept to enhance energy and power density in ultra-high-energy storage capacitors The second deals with the fabrication and characterization of prototype supercapacitors made of nanostructured carbon (CNS) in the form of soot that can be processed by mechanical means The fabrication of supercapacitor components such as CNS electrodes, gel polymer electrolyte and effective separator can be made via a composite platform for scalable manufacturing processes The third deals with using hybrid solar systems to increase the electrical efficiency and recover losses of thermal energy by circulating water or air as a coolant Numerical studies will focus on finding the best cooling strategy for photovoltaic panels that work simultaneously as a roof-finishing layer A comparative analysis of different air gap widths for natural convection cooling has already been carried out experimentally Other performance tests are planned which will be based on laboratory experiments that will serve as the foundation for the hybrid solar system component
معلومات التواصل
البريد الإلكتروني : nbadi@ut.edu.sa
2421