

Compounding and Manufacturing (2)

Dr. Ahmed M. Hamdan

Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk

Basics of Pharmaceutical Calculations

- Basics of Mathematics
- ROMAN
- ss
- I or i
- Vorv
- X or x
- L or l
- Cor c
- D or d
- \mathbf{M} or m
- ARABIC
- 0.5 or $1 / 2$
- 1 (one)
- 5
- 10
- 50
- 100
- 500
- 1000

Conversion of Arabic numbers to Roman Numerals

- Caps \# xiv
- Gtts ix
- Tabs \# XLVIII
- Tabs \# xxi
- Gms xlv
- ii tsps
- Positional Notation:

Position of the number carries a mathematical significance.

- 14 capsules
- 9 drops
- 48 tablets
- 21 tablets
- 45 grams
- 2 teaspoonfuls
- Value of letters is:

Smaller - ADD
Larger - SUBTRACT

Conversion of Arabic numbers to Roman Numerals

- Basics of Fractions
- Whole Numbers ($9=$ IX, 220=CCXX, $6=$ VI, $19=$ IXX)
- Fractions
- Parts of whole numbers (1/4, 2/7, 11/13)

Numerator

Denominator

- Decimal Numbers
- Another means of writing fractions

$$
(1 / 2=0.5,1 \& 3 / 4=1.75)
$$

Pharmacy Measuring System

- Metric System
-Liquids (Volume)
- Liter
- Milliliter

$$
\begin{aligned}
& 1 \mathrm{~L}=10 \mathrm{dL}=1000 \mathrm{~mL} \\
& 1 \mathrm{~mL}=0.001 \mathrm{~L}
\end{aligned}
$$

- Milliliters = cubic centimeters (cc)
-Solids (Weight)
- Kilogram
- Gram
- Milligram
- Microgram
$1 \mathrm{~kg}=1000 \mathrm{~g}$
$1 \mathrm{~g}(\mathrm{gm})=0.001 \mathrm{~kg}=1000 \mathrm{mG}$ $1 \mathrm{mG}=0.001 \mathrm{~g}=1000 \mathrm{mcg}$
$1 \mathrm{mcg}=0.001 \mathrm{mG}=0.000001 \mathrm{~g}$

Pharmacy Measuring System

- Avoirdupois System
- Pound lb
- Ounce oz
- Grain gr
i lb=16oz
i oz $=437.5 \mathrm{~g}$
i gr $=60 \mathrm{mg}$
- Apothecary System
- Gallon gal
i gal $=\mathrm{iv}$ qt
- Quart qt iq $=$ ii pt
- Pint pt i pt $=x$ vifl oz
- Fluid Ounce fl η^{2} ifl oz $=$ vii fl dr
- Fluid dram f3 ifl dr = iv min
- Minims/Drop gtt i min
(Metric)
4000 mL
1000 mL
500 mL 30 mL
4 mL
1 mL

Pharmacy Measuring System

- Household units
- Teaspoon $1 \mathrm{tsp}=5 \mathrm{~mL}$
- Tablespoon 1 tbsp $=3 \mathrm{tsp}=15 \mathrm{~mL}$
- $2 \mathrm{tbsp}=30 \mathrm{ml}=1 \mathrm{fl} \mathrm{oz}$
- Cup

1cup $=8 \mathrm{fl} \mathrm{oz}$ • Milliequivalents

- Temperature
- Centigrade (Celsius) C
- Fahrenheit, F
-9C=5F-160
 liter of salt solution
- Klor-con 8mEq
- Refer to positively charged ions per

Strategies for drug calculation

- Take care of the UNITS
- Use the following formula: $\frac{\text { Dosage available }}{\text { Amount available }}=\frac{\text { Dosage Desired }}{\text { Amount desired }}$
- Take care of the logic of the result.
- Prescribe the medication correctly.

Calculation of the Oral medication

NDC 68850-001-08

Mrs Tompkins has a nocturnal asthma. The physician ordered Dexamethazone 1.5 mg b.i.d. You have the above Dexamethazone Elixir. You need to calculate the correct dosage for your patient.

Calculation

- Formula:

$\frac{\text { Dosage available }}{\text { Amount available }}=\frac{\text { Dosage Desired }}{\text { Amount desired }}$

- Calculation:
$\frac{0.5 \mathrm{mg}}{5 \mathrm{ml}}=\frac{1.5 \mathrm{mg}}{\mathrm{X}}$
- $\mathrm{X}=\left(1.5^{*} 5\right) / 0.5=15 \mathrm{ml}$

Take 1 table spoonful (15 ml) of the Elixir twice a day

Take care

Be smart.... Sometimes you can find very high dose results such as 30 tables \& 500 ml or too small such as 0.21 tablet \& 0.5 capsule!!!

So, check the unit before judging that there is a mistake from the doctor and advise the patient to recheck the physician.
i.e the answer will be 0.5 capsule. Please recheck the

physician.

Calculation of the Oral medication

-A liquid medicine is supplied in a concentration of $10 \mathrm{mg} / 5 \mathrm{~mL}$. A patient requires 400 mg three times daily for 5 days, then 300 mg three times daily for 5 days, then 200 mg once daily for 5 days. Calculate the total volume of the liquid med.?

Calculation

- Formula:

$$
\frac{\text { Dosage available }}{\text { Amount available }}=\frac{\text { Dosage Desired }}{\text { Amount desired }}
$$

- Calculation: For $400 \mathrm{mg}: \frac{10 \mathrm{mg}}{5 \mathrm{~mL}}=\frac{400 \mathrm{mg}}{\mathrm{xmL}}$
- $\mathrm{X}=\left(400^{*} 5\right) / 10=200 \mathrm{~mL}$

$$
\text { For } 300 \mathrm{mg}: \frac{10 \mathrm{mg}}{5 \mathrm{~mL}}=\frac{300 \mathrm{mg}}{x \mathrm{~mL}}
$$

Calculation of the Oral medication (cont.)

- $\mathrm{X}=(300 * 5) / 10=150 \mathrm{~mL}$
For $200 \mathrm{mg}: \quad \frac{10 \mathrm{mg}}{5 \mathrm{~mL}}=\frac{200 \mathrm{mg}}{\mathrm{xmL}}$
- $\mathrm{X}=(200 * 5) / 10=100 \mathrm{~mL}$
- Take 200 mL of the preparation three times daily for 5 days, then take 150 mL three times daily for 5 days, then take 100 mL once daily for 5 days! Recheck the Physician!!!

Calculations of parentral medication

-The physician ordered Synthroid 0.2 mg IM once daily. The available medication is supplied as $1000 \mathrm{mcg} / \mathrm{mL}$. What shall you do?

Calculation

- Unit conversion: $1000 \mathrm{mcg}=1 \mathrm{mg}$
- Formula: $\quad \frac{\text { Dosage available }}{\text { Amount available }}=\frac{\text { Dosage Desired }}{\text { Amount desired }}$
- Calculation:
$\frac{1 \mathrm{mg}}{1 \mathrm{ml}}=\frac{0.2 \mathrm{mg}}{\mathrm{X}}$
- $\mathrm{X}=\left(0.2^{*} 1\right) / 1=0.2 \mathrm{ml}$
- Take 0.2 mL of Synthroid in the syringe to be given intramuscularly.

Calculations of parentral medication

-The physician ordered Codeine SO_{4} gr ss IM every 4 hrs prn. The available medication is supplied as Codeine SO_{4} $60 \mathrm{mg} / \mathrm{mL}$. What shall you do?

Calculation

- Unit conversion: $\mathrm{gr} \mathrm{ss}=1 / 2 \mathrm{gr}=1 / 2 * 60=30 \mathrm{mg}$
- Formula: $\quad \frac{\text { Dosage available }}{\text { Amount available }}=\frac{\text { Dosage Desired }}{\text { Amount desired }}$
- Calculation:
$\frac{60 \mathrm{mg}}{1 \mathrm{ml}}=\frac{30 \mathrm{mg}}{\mathrm{X}}$
- $\mathrm{X}=(30 * 1) / 60=0.5 \mathrm{ml}$
- Take 0.5 mL of Codeine in the syringe to be given ingtramuscularly every 4 hr .

Calculations of parentral medication

-The physician ordered Phenobarbital gr iii ss every 8 hrs IM. The available medication is supplied as Phenobarbital $1 \mathrm{mg} / \mathrm{mL}$. What shall you do?

Calculation

- Unit conversion: gr iii ss= $3 / 2 \mathrm{gr}=3 / 2$ * $60=90 \mathrm{mg}$
- Formula:
$\frac{\text { Dosage available }}{\text { Amount available }}=\frac{\text { Dosage Desired }}{\text { Amount desired }}$
- Calculation:
$\frac{1 \mathrm{mg}}{1 \mathrm{ml}}=\frac{90 \mathrm{mg}}{\mathrm{X}}$
- $\mathrm{X}=\left(90^{*} 1\right) / \mathrm{l}=90 \mathrm{ml}$
- Take 90 ml of Phenobarbital in syring and to be give intramuscularly. Re-consult the PHYSICIAN.

Calculations of infusion rate

- Calculate the flow rate of Aminophyllin1 g in 500 ml of 5% Dextrose to infuse at $20 \mathrm{mg} / \mathrm{hr}$.

Calculation

- Formula: $\frac{\text { Dosage in } \mathrm{m} / \mathrm{hr} \text { desired }}{\text { Total } \mathrm{mg} \text { aviable }} \mathrm{X}$ Total volume $(\mathrm{mL})=\mathrm{ml} / \mathrm{hr}$
- Calculation: Amount of Aminophyllin $=1000 \mathrm{mg}$

$$
\frac{20 \mathrm{mg} / \mathrm{hr}}{1000 \mathrm{mg}} \mathrm{X} 500=10 \mathrm{~mL} / \mathrm{hr}
$$

- Adjust the flow rate to $10 \mathrm{~mL} / \mathrm{hr}$

